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Two-species, irreversible, very rapid reactions, with mild heat release, in a turbu- 
lent shear flow are shown to be analogous to the transport of two non-reacting 
species by the same shear field. Expressions for the probability density functions of 
the reacting species, the product species and the reaction-generated thermal field 
are obtained in terms of the joint probability density functions of the two non- 
reacting species. As an example we have constructed, from recent measurements 
of temperature statistics a t  a cross-section in a heated jet, the meanand fluctuating 
concentration fields of the reacting species and the mean concentration of the 
product. 

1. Introduction 
There are a few asymptotic situations in which fluid flows containing chemically 

reactive species can be successfully studied analytically. Perhaps the most inter- 
esting and useful of these is the condition known as ‘diffusion limited’, by which 
one means that a time scale characterizing the reaction kinetics is very much less 
than any appropriate scalar transport time of the flow. Under this condition the 
reaction proceeds a t  a rate determined by the fluid transport process rather than 
chemical kinetics. When there are just two reacting species sharp interfaces 
develop, separating regions of flow which contain alternately either one or other 
species but not both. Studies of this phenomenon in laminar flows are fairly 
extensive, dating back to Danckwerts (1950) and to Pearson (1963). In  practice 
the transporting fluid is usually in turbulent motion and fundamental analytical 
studies have been confined either to statistically homogeneous flows (O’Brien 
1971) or to the local physics and chemistry of the reaction zones (Gibson & Libby 
1972; O’Brien 1973). There is also a strong thread of useful research in the 
chemical engineering literature in which theoretical predictions for chemical 
mixing in turbulent pipe flow are made on the basis of either numerical modelling 
or assumptions about the stochastic nature of the concentration fields, e.g. 
that the fluctuations have a Gaussian distribution. For a review with extensive 
references the reader is referred to Brodkey (1973). 

The purpose of this paper is to pursue an already well-established analogy 
(Toor 1962) in diffusion-limited turbulent reacting flow to make a direct con- 
nexion, without other assumptions, between measurable or potentially measur- 
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able quantities in a turbulent mixing shear field and the species concentrations 
and thermal fields produced by reacting components in the same shear flow. 

2. Diffusion-control reactions 
We restrict our study to a one-step irreversible reaction of the form 

A +nB + mP+ heat 
taking place in an incompressible shear flow; n and m are stoichiometric coeffi- 
cients. 

Assuming that the specific heats C, of all the products are constant and equal 
and the species molecular diffusivities D are constant and equal and identical 
to the thermal diffusivity, one obtains the following system of four equations: 

( 1 )  

qr,) = w,, L(r,) = nW,, qr,) = - m ~  
A ,  I 
i 

where F A ,  I?, and rI, are the mole concentrations of species A ,  B and P ,  respec- 
tively, L is the operator {a/at + u .V - DV2}, W, is the rate of production of species 
A in moles/unit volume per second, p is the density, p the viscosity, 7 the tem- 
perature, @ the dissipation function and q the heat released per mole of A 
produced. 

The following approximations are necessary only if the thermal field is to be 
included in the analogy developed below. Namely, the last two terms of the energy 
equation must be negligible (Dopazo & O’Brien 1973). That is, neither viscous 
dissipation nor pressure work contributes significant heat to the system as com- 
pared with that produced by the reaction. Both of these approximations become 
more reasonable at low speeds. It is also necessary to assume that q is a constant: 
a plausible assumption only if the entire temperature field is not too far from 
uniform, since in general q depends on the heats of formation of the reacting 
species and product. 

With these approximations and the redefinitions I?& = n-ll?,, rlp = r p / m  
and 7’ = pC,~/q we find, on dropping the primes, 

An alternative formulation, making use of the linearity of the operator L, is 
as follows (Dopazo & O’Brien 1973; Lifian 1973, private communication): 

qr,) = qr,) = r(- r,) = L ( - 7 )  = w,. (3) 

-w,) = w, ( 4 a )  

( 4 b - 4  L(rB- r,) = L(r,+ r,) = qr,+7) = 0, 
where the explicit effect of the reaction is absent from all but the first equation. 
It is, however, implicit in the convective component of the operator L. In  order 
to  remove that implicit dependence it is necessary finally to restrict our consider- 
ation to dynamically passive reactive flow systems in which the exchange of 
energy between the reaction and the flow is negligible. This presumably presup- 
poses mild concentrations or weak heat release and negligible volume change due 
t o  reaction. Both of these limits are consistent with the requirements of constant 
density and small temperature fluctuations already imposed. I n  deriving ( 4 )  
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no limitation on the rate of reaction has been imposed. However, this formulation 
leads to a profound simplification only in the diffusion-controlled limit. In  this 
case (4a) can be replaced by a simple relation between the probability density 
function of rB and the probability density function of rB - F A .  The method has 
been described for the special case of homogeneous turbulent flow by O’Brien 
(1971) and relies essentially on the sharply defined spatial segregation of 
chemical species when the ratio R of the reaction rate to the rate of turbulent 
diffusion is very large. Gibson & Libby (1972) and O’Brien (1973) have argued 
that the interface thickness in such a limit is a t  least as small as the Batchelor 
microscale y B  = D / y ,  where y is the strain rate associated with Kolmogorov- 
scale turbulent eddies (Batchelor 1959). 

If we define ~ ( x , t )  = rB(x,t)-rA(x,t) then, as a consequence of reactive- 
species segregation, thin interface surfaces and non-negativeness of concentration, 

A more useful consequence, for our purposes, is that 
n n  

where H ( z )  is Heaviside’s unit function (defined by H ( z )  = 1 for z > 0 and 
H = 0 for z < 0). The notation PJz] signifies the probability density function 
of the random variable y evaluated a t  y = z .  

Equations (4), with (6) replacing (4a), give a complete description of species 
conservation and energy in the diffusion-controlled limit. One property of the 
system which was expected and which is clearly displayed in this formulation 
is the lack of any chemical kinetic time scale. Turbulent mixing times, buried in 
the operator L, determine the evolution of the equations. To solve such a system 
one must incorporate the Navier-Stokes equation, or its solution, but this is 
quite beyond us for turbulent shear flows a t  present. In  the next section it is 
shown that experimental data on the joint probability density function of two 
simultaneously mixed scalar fields is sufficient to determine the probability 
density functions of F A ,  r,, rr and T. 

3. The analogy 
Equation ( 6 )  provides a method of determining the statistical behaviour of 

rL-’ in terms of the dependent variable x of (4b) and a similar technique can be 
applied to determine PrA[FA]. We are left with the task of solving (4b-d). It is 
further evident that if (4b) and (4c) can be solved for Prp[r,] the same tech- 
nique can be used to determine P,[T] from (4d) .  

Hence the problem becomes one of constructing an analogy for the pair of 
equations (4b) and (4~). Two properties of the operator L are invaluable for 
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this purpose. It is linear and each term contains a t  least a first-order derivative. 
Thus one may add an arbitrary constant to each independent variable and 
multiply it by an arbitrary constant and still satisfy the homogeneous equations 
( 4 b )  and (4~). 

Consider a boundary surface of a turbulent shear flow. Over the part S ,  of this 
boundary, species B a t  a uniform concentration rB(S1) is added. Let species A 
be injected a t  a concent.ration FA(#,) over the part S ,  of the boundary. Across 
the remainder of the boundary, S,, the flux of either species is zero. Define 

Then L(Y) = 0, 

Y = 1 on S,, Y = 0 on X,, aY/ay = 0 on S,. 
Consider now an analogous problem in which fluid of temperature T(S,) is 

injected over S,, fluid of temperature T(S,) is injected over S,  and the remainder 
of the boundary, X,, is thermally insulated. Define 

I Then L(8) = 0, 

8 = 1 on S,, 8 = 0 on S,, aO/ar = 0 on S,. 
(9) 

Provided that the velocity field at surfaces of injection of Y is identical to  
that a t  surfaces of injection of 8, uniqueness theorems for parabolic systems 
(Friedman 1963) guarantee that Y(x, t )  = 8(x, t )  for each member of an ensemble 
of experiments and hence that 

PY[Y(X, t)l = p,[B(x, t)l. (10) 

Using (7) and(5) measurements ofP,[B(x, t ) ]  can be convertedinto P,,[I?,(x, t ) ] ,  
a task we shall complete a t  the end of this section. 

Defining z = (I?, + I?p)/l?,(Sl), where for convenience we exclude the possi- 
bility of injecting the product a t  any surface although that situation causes no 
fundamental difficulty, we find 

L(2) = 0, 

z = 1 on S,, x = 0 on S2, axjar = 0 on S,, 
/) 

and clearly this is analogous to the set (9),  so that P,[z] = P0[8]. However this is 
not sufficient information to obtain P,,[r,] from ( 5 )  except where the two 
random variables rrr and F p  are statistically independent. In  that case the 
characteristic function of their sum is the product of the characteristic function 
of rB with that of rp,  so that P,$"] can be extractled if P,,[r,] and P,[z] are 
known. There is some suggestion in the literature that this might be a plausible 
approximation (Dopazo & O'Brien 1973) but there are no data to support it a t  
present. 

I n  order to obtain P,,[I?,] without any assumption it is necessary to define 
a second turbulent scalar mixing field c ,  which, for example, might be the 
concentration of a non-reacting species. Denote by c(S,) its value when injected 
across S ,  and, for simplicity, maintain zero concentration on S,. The flux across 
the boundary 8, is zero. 
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Let y(x, t )  = c(x, t)lc(S,). Then 

(12) I y = 1 on S,, y = 0 on S2, ay/aq = 0 on S,, 

and clearly <[z(x, t)] = P,[y(x, t ) ] ,  if the velocity field transporting z is identical 
to that transporting y. A more useful result for our purposes concerns the rela- 
tionship of the joint probability density function of the coupled reactive system 
( Y ,  2) to the joint probability density function of the double scalar mixing field 
(0, y). We have 

P Y Z [ Y ( X ,  t ) ,  Z(X, t)l = P,,[&x, t ) ,  Y(X, t)I.  (13) 

The boundary conditions prescribed in this section are all deterministic. It 
seems likely from a functional formulation of these problems that (13) also holds 
where the boundary conditions are stochastic provided that the joint probability 
density functionals are properly analogous a t  the boundaries, but we have been 
unable to find uniqueness theorems which guarantee this result. There is little 
hope that experiments can be performed a t  this level of information. 

Equation (10) carries information already contained in (13), from which we 
now derive explicit stochastic information about FA, rB and rp.  

From (13), since Y = [x+ FA(S2)]/[FA(S2) + rB(S1)] and Z = c/c(Sl) 

(14) 

where PTc is the directly measured joint probability density function of the 
temperature and non-reacting concentration fields. 

To obtain PrB(FB) we first construct P,[x] using 

Therefore, from (14)) 

Finally, on applying ( 5 )  we find 

where P,[T(x, t)] is a directly measured probability density function of the tem- 
perature. A similar result is easily generated for PrA[FA]. 
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To obtain an expression for Prp we construct the joint probability density 
function PrBrp[rB, r,] with the help of (5): 

By integration of (16) with respect to Fr one recovers (15). Similarly, to 
obtain PrP[l?,] it is necessary to integrate (16) with respect to rB. Since 
occurs in both independent variables no simplification in the formalism results 
and in general a numerical integration of the experimental data on the joint 
probability density function PTc[T, c] is necessary. The mean concentration 
of the product T p [ x , t )  is an exception. It mai&be directly obtained from the 
relationship 2 = y. That is, 

or 

Entirely analogous results apply for determining the statistical properties 
of the reaction-produced temperature field 7- with one added proviso. If the re- 
actant species are introduced a t  the same constant temperature T ~ ,  then we find 
that PrBT[rB,7-] can be obtained from &,rp[rB, r] by a simple substitution 
of 7- - 70 for the independent variable rr, : 

4.Aome examples 
In  this section we describe five typical turbulent shear flows, where the above 

analogy is applicable. The examples chosen are by no means exhaustive; they 
are meant to suggest the possible usefulness of the analogy and in fact they repre- 
sent systems that have been used in previous reactive-flow investigations. 

4.1. The two- or three-dimensional wake 

A uniform stream with a reactant concentration of uniform value flows 
over a sphere from which a reactant species of concentration rB(S1)  is injected 
into the main stream. The temperatures a t  S,, 8, and in the uniform stream are 

7-0. 
The analogy consists of a uniform stream a t  constant temperature T(X,) 

flowing over the sphere from which is injected a non-reactant species of con- 
centration c(8,) a t  temperature T(S,). The surface of the sphere is thermally 
insulated. 
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4.2. The two- or three-dimensional jet 

A reactant B at concentration FB(Sl) is injected into a main flow containing 
a species A a t  a uniform concentration FA(S,). Both temperatures are r,,. 

The analogous system consists of a fluid of concentration c(X,)  a t  temperature 
T(X,) injected into a main flow of zero concentration and temperature T(S,) .  

4.3. The two-dimensional mixing layer in the wake of aJat plate 
The upper stream contains species A a t  a concentration rA(S2)  and the lower 
stream contains species B at a concentration FB(Sl). Both temperatures are r,,. 

An analogy would consist of an upper stream a t  zero concentration and a 
temperature T(X,) whereas the lower stream would have a temperature T(X,) 
and concentration c(S,). 

4.4. Two coaxial jets 
Species B is injected from the inner jet with concentration FB(Sl). Species A 
is injected from the outer jet with concentration FA(S2). The temperature of 
both streams and the environment is r,,. 

The analogous system is comprised of an inner jet with concentration c(S,) and 
temperature T(8,). The outer jet has zero concentration and temperature T(X,). 
The environment temperature, say T,, in this case can be shown to have to satisfy 
the following constraint: 

4.5. The sphere wake with two-species injection 
A uniform stream of temperature T,, flows over a sphere. Species B is injected 
from a region 8, of the sphere a t  temperature T,, and concentration FB(Sl). 
Species A is injected from a region S,  of the sphere with concentration FA(S2) 
and the same temperature r,,. 

The analogue consists of a uniform stream a t  temperature T, and zero con- 
centration flowing over the same sphere, from which a non-reactant species is 
injected a t  a concentration c(X,) and temperature T(S , )  from a region S,  of the 
surface. From a region S, of the surface a fluid with zero concentration and tem- 
perature T(S,) is emitted. The constraint (17)  again applies and the sphere is 
thermally insulated. 

5. An application 
There are several recent experimental investigations which have generated 

data on probability density functions of temperature in shear flows but to our 
knowledge there are no data on the joint probability density function of two scalar 
fields. I n  this section we apply the analogy to the case given in $4.2, making 
use of recently reported measurements of the temperature across a heated 
axisymmetric jet, with exit Reynolds number 31.6 x lo4 (Tutu & Chevray 1973). 
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FIGURE 1.  Probability density functioiis of temperature 15 diameters downstream 
of jet exit. + , 1 diameter from centre-line; 0,  diameters from centre-line. 

$he exit temperature T(S,) of the jet was 50.4 "C, the environmental tempera- 
ture was 29.26"C and the jet diameter was gin. Measurements were taken a t  
eight radial positions 15 diameters downstream of the jet. The analogy described 
in 93 can be used to  transform measured P,[@] into P,,[r,] and PrA[r,]. 
Further, the mean concentration of product (or reaction-generated temperature) 
can be found from these measurements, as we showed in 33. The relationship is 

- 
rP = r B ( 4 )  CT - 5Y~,) I / [Wl)  - T(fl,)I - f,. 

More details on product-species behaviour can only be found by measurement 
of joint probability density functions. 

The results are presented in terms of the mean and fluctuating fields of Fa and 
I?,, and the mean of rP as a function of radial position a t  the 15 diameter axial 
location. Figure 1 shows the measured temperature probability density function 
a t  two radial locations. I n  figure 2 the mean fields are displayed for various 
values of F,(#J when Fa(&) = 1. When rB(fJ1) = Fa(#,) there is almost no 
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FIGURE 2.  Mean concentration of reacting species 15 diameters downstream of jet exit as 
a function of radial position. F A ( & )  = 1.  ~ , rB(sl) = 1 ;  -- , rB(xl) = 5 ;  ---, 
rB(q = 10. 

oncentration of B a t  15 diameters downstream and that curve has been ampli- 
100 times in order to display it on the same graph as 

FB(,S1) = 5 and FB(fl1) = 10. 

The same amplification has been applied to the fluctuation intensity & in 
figure 3. The mean concentration of product is shown in figure 4. 

It is clear from figure 1 that there is no simple similarity assumption by which 
one can reasonably give an analytical form to the temperature probability 
density function. This will be even more true closer to the jet exit except possibly 
in the mixing-layer region immediately after the jet. There seems to be no alter- 
native to extensive measurements of probability density functions and joint 
probability density functions in the entire thermal field of the heated jet. But 
such measurements can be extended, by this analogy, to describe the statistics 
of the concentration fields of rapidly reacting species, a task which is generally 
considered to be very difficult experimentally. 

- 
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FIGURE 3. Intensity of concentration fluctuations of reacting species 15 diameters down- 
stream of jet exit as a function of radial position. 
rB(sl) = 5 ;  - - -, rB(sl) = 10. 

= 1. __ , ws,) = 1; --, 

6. Discussion 
The analogy developed above is, in principle, exact. However, when it is used 

with experimental data as in $ 5  the unavoidable imprecisions in the boundary 
conditions of one system may not behave analogously in the other. For example, 
the temperature of the environment in the jet experiment referred to in $ 5  is not 
deterministic but has a fluctuation level of the order of 1 "C (Tutu & Chevray 
1973). On the other hand the chemical-species concentration rB must be strictly 
zero in the ambient portions of the chemically reacting jet. Thus only negative 
fluctuations of the random variable x with respect to rA(h'J are permissible. 
We have, for the purposes of the analogue, interpreted the minimum measured 
t e m t u r e  (29-26'C) as the ambient one. Flucttiations with respect to that 
value are positive everywhere. Hence no arbitrariness arises in carrying out the 
computations of the analogue but some inaccuracy, especially near the chemical 
jet boundary, must be anticipated. Our plotted results avoid the boundary. An 
alternative method of processing the data would have been to discard all tem- 
peratures whose values fall below the mean ambient temperature and to nor- 
malize the probability density functions shown in figure 1. All temperatures so 
discarded could be identified with the fluctuations of in the ambient fluid. 
This procedure is more complicated and not obviously more accurate than the 
one we have adopted. Experiments exhibiting the lowest possible fluctuations 
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FIGURE 4. Mean concentration of product species 15 diameters downstream of jet exit as 
a function of radial position. rA(Sz) = 1. -, rB(S1) = 1 ;  --y rB(X1) = 5 ;  -- -9 

rB(sl) = 10. 

in ambient temperahre would be desirable in any further application of the 
theory. Recent results (La Rue & Libby 1974) with a two-dimensional heated 
wake are excellent in this respect and we have applied our technique to  them. 
Unfortunately the measured data points are too sparse (eight to a cross-section) 
and the initial temperature differences too large for our method to be reliable. 
If the reader should care to see the results of this application he may obtain 
them by writing to either of the authors of this paper. 

We wish to thank Prof. Chevray and Prof. Libby for allowing us to make use 
of unpublished data from their laboratories. The National Science Foundation 
supported this research under grant GK-21214. 
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